

IEA DSM Task 17 Follow Up Activities

Matthias Stifter, AlT René Kamphuis, TND

Leonardo ENERGY October 14, 2015

Follow Up Activities

• Evaluation, Measurement and Verification (EM&V) of DR :

associated difficulties on how to measure the effects of a DR services

Forecast and Reliability –

• associated power system reliability issues and DR.

• (Cost Benefit Analysis for DR)

• CBA focus on DR services and products

Evaluation, Measurement and Verification (EM&V) of DR

EM&V is a key requirement for establishing successful DR programs.

The following topics need to be covered with respect to this problem:

- Quantification of expected gains
- Identification of customer's baseline demand/usage
- How are energy consumption reductions measured no common standards exists.
- Different evaluation criteria between TSO, BRP and retailer may exist
- Level of M&V: aggregator vs. household (pre-qualification requirements)
- Lack of EM&V is seen as a **market barrier** for consumer centered DR services

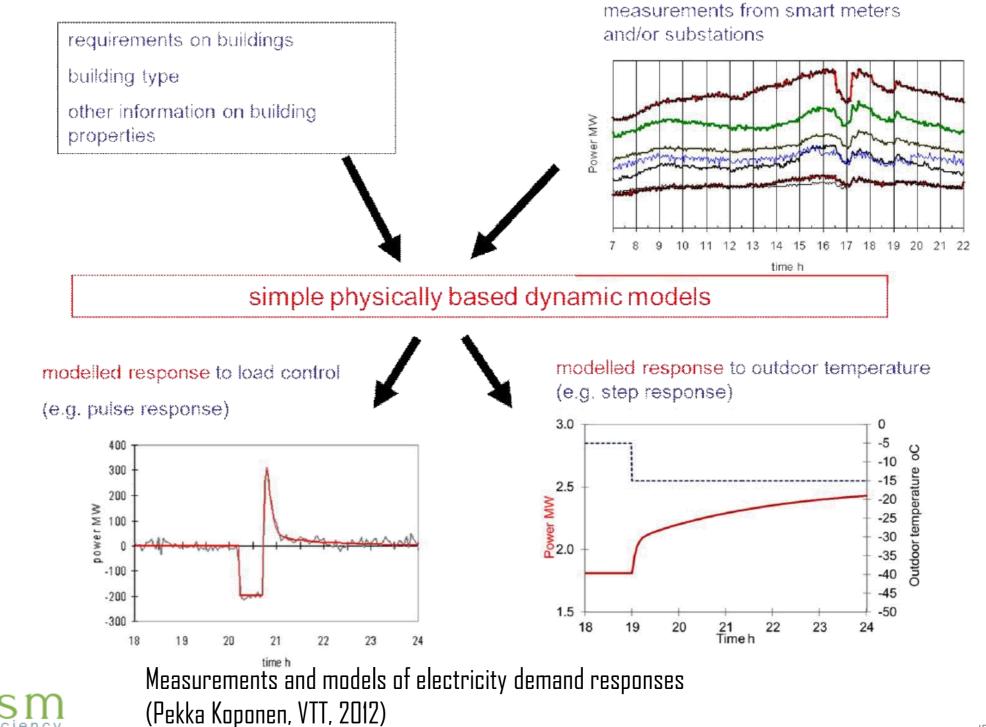
One of the main objectives of EM&V is to **quantify the provision of a service** according to the **product specification**:

- Qualify potential resources as an entry gate to participation
- Verify resource conformance during and after participation
- Determine amount of product delivered as part of financial settlement

From the above mentioned issues the following **EM&V** *requirements* can be derived in order to qualify and deploy DR services and products:

- Methodology of baseline metering (i.e. metering configuration)
- Measurement / Metering of DR product delivery
- Communication requirements i.e. availability, control signal response, security (CIA)
- Exchanging the metered information, including format and protocol
- Measurement interval, reading frequency / sampling and accuracy
- **SLAs** of the DR product

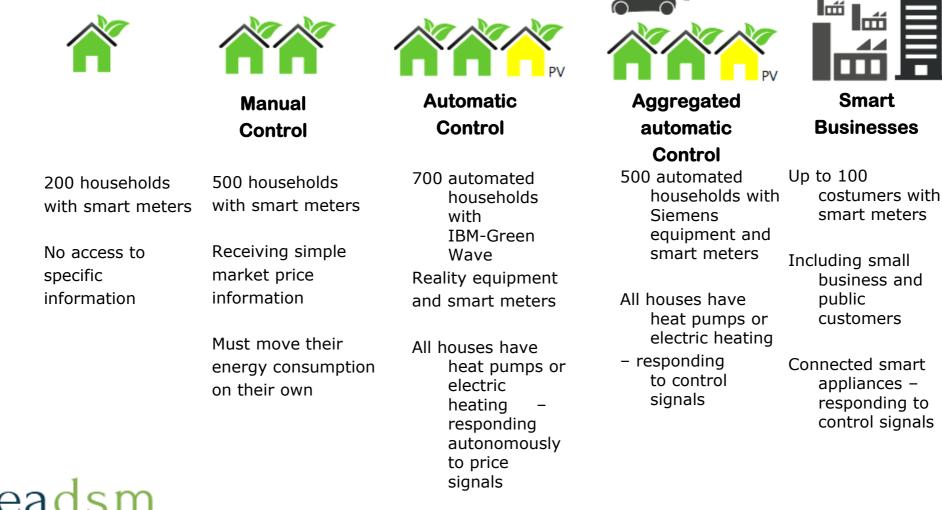
- Power System Operation an important part is the **day ahead forecast**
- Impact on many planning processes from dispatch, scheduling and optimization of generator to markets
- Accuracy has a strong impact on operational issues



Research questions

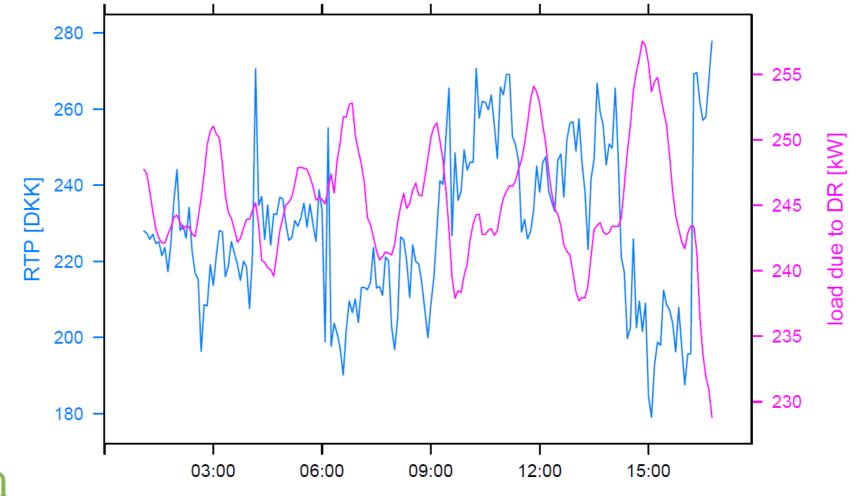
- Accurate DR forecasting and modeling of DR behavior for integration into power system operation
- Understanding the external parameter dependencies;
- Reasons for variations and deviations of estimated DR behavior
- System interaction and critical parameters
 - e.g., penetration levels, communication latency, price variations, DR signal intervals or durations, temperature, rare events
- Reliability of forecasts and impact assessment in case of different behavior failure of DR service
- Mitigation and control of problems due to DR failures

Modelling


10

Example of determine the DR response validation in the **EcoGridEU** project

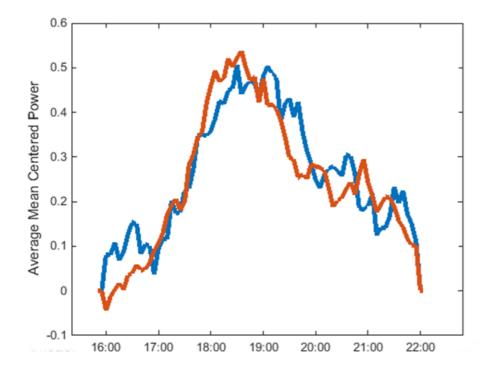
2000 Participating Customers in the Demonstration

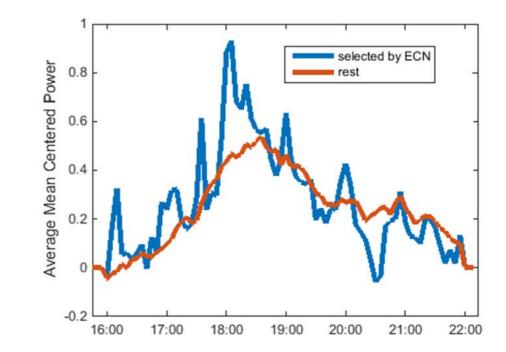


- Experimental groups not comparable to the control group due to differences in group composition in terms of
 - Heating systems (type, wood stoves)
 - Usage (Holiday houses)
- Market model is mostly nonlinear
 - Models systems response, but not statistically treatable
- Therefore a purely **linear model** was used

- Sample reaction
- Although linear, not always the same reaction to the same price due to influence from the past

- Differentiated model
 - changes in consumption, not consumption for statistical reasons
- Influence from future and past
 - Day ahead because of the agent listening to forecast
 - RTP up to a certain time back
 - Weather up to a certain time back

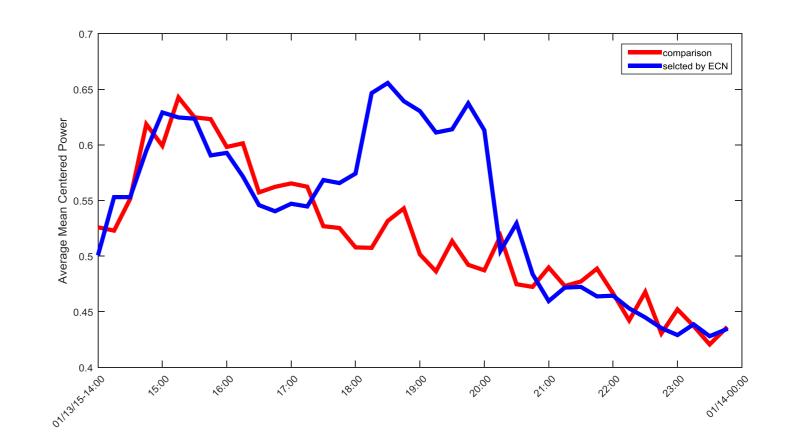

 Sample output 	reference manua	l IBM dir.el	IBM HP Siemens d.e+ HI	ו	
rt_lag1	-0.001	0.002	-0.032^{***}	-0.054^{***}	-0.175***
rt_lag2	(0.003) 0.003 (0.004)	(0.003) -0.001 (0.004)	(0.004) -0.083^{***} (0.005)	(0.004) -0.074^{***} (0.005)	(0.005) -0.183^{***} (0.006)
rt_lag3	0.004 (0.004)	-0.004 (0.004)	-0.056^{***} (0.006)	-0.030^{***} (0.005)	0.082 ^{***} (0.006)



Example of determine the DR response validation in the **EcoGridEU** project

Manual customers (blue reference, red manual group)

Very high prices



Example of determine the DR response validation in the **EcoGridEU** project

Manual customers (blue reference, red manual group)

• Very low prices

Questions

AIT Austrian Institute of Technology	TNO Netherlands organization for science and technology
Matthias Stifter	René Kamphuis
Energy Department	Energy efficiency program
Electric Energy Systems	Service enabling and management
Giefinggasse 2	Eemsgolaan 3,
1210 Vienna	9727 DW Groningen
Austria	T +31 (0) 621134424
T +43(0) 50550-6673	PO Box 1416
M +43(0) 664 81 57 944	9701 BK Groningen
F +43(0) 50550-6613	The Netherlands
matthias.stifter@ait.ac.at	rene.kamphuis@tno.nl
http://www.ait.ac.at	www.tno.nl

